YES 0.684
H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:
↳ HASKELL
  ↳ BR
mainModule Main
|  | ((notElem :: Bool  ->  [Bool]  ->  Bool) :: Bool  ->  [Bool]  ->  Bool) | 
module Main where
Replaced joker patterns by fresh variables and removed binding patterns.
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
mainModule Main
|  | ((notElem :: Bool  ->  [Bool]  ->  Bool) :: Bool  ->  [Bool]  ->  Bool) | 
module Main where
Cond Reductions:
The following Function with conditions
is transformed to
| undefined0 | True | = undefined | 
| undefined1 |  | = undefined0 False | 
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
mainModule Main
|  | (notElem :: Bool  ->  [Bool]  ->  Bool) | 
module Main where
Haskell To QDPs
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
new_foldr(vx3, :(vx40, vx41)) → new_foldr(vx3, vx41)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_foldr(vx3, :(vx40, vx41)) → new_foldr(vx3, vx41)
 The graph contains the following edges 1 >= 1, 2 > 2